Agentic AI Models Guide
Build and deploy autonomous AI agents that can plan, execute, and learn from complex tasks.
What are Agentic Models?
Agentic models are AI systems that can:
- Plan - Break down complex goals into steps
- Execute - Take actions to achieve objectives
- Learn - Improve from experience
- Adapt - Handle unexpected situations
- Collaborate - Work with other agents
Key Differences from Traditional AI
Traditional AI | Agentic AI |
---|---|
Single response | Multi-step execution |
Stateless | Maintains context |
Reactive | Proactive |
Fixed behavior | Adaptive behavior |
Isolated | Collaborative |
Core Concepts
Agent Architecture
graph TD
A[Goal] --> B[Planner]
B --> C[Task Queue]
C --> D[Executor]
D --> E[Tools/Actions]
E --> F[Environment]
F --> G[Observer]
G --> H[Memory]
H --> B
I[Learning Module] --> B
I --> D
Agent Components
1. Planner
Breaks down high-level goals into actionable tasks:
class AgentPlanner {
async createPlan(goal, context) {
// Analyze goal
const understanding = await this.understandGoal(goal);
// Generate task sequence
const tasks = await this.generateTasks(understanding, context);
// Optimize execution order
const plan = await this.optimizePlan(tasks);
return plan;
}
}
2. Executor
Carries out planned tasks:
class AgentExecutor {
async executePlan(plan) {
const results = [];
for (const task of plan.tasks) {
try {
const result = await this.executeTask(task);
results.push(result);
// Update plan based on results
await this.updatePlan(plan, result);
} catch (error) {
await this.handleError(error, task, plan);
}
}
return results;
}
}
3. Memory System
Stores and retrieves relevant information:
class AgentMemory {
constructor() {
this.shortTerm = new ShortTermMemory();
this.longTerm = new LongTermMemory();
this.episodic = new EpisodicMemory();
}
async remember(event) {
// Store in appropriate memory
await this.shortTerm.store(event);
// Consolidate important info
if (this.isImportant(event)) {
await this.longTerm.store(event);
}
// Track episodes
await this.episodic.addToCurrentEpisode(event);
}
}
4. Tool Interface
Connects agents to external capabilities:
class AgentTools {
constructor() {
this.tools = new Map();
}
register(name, tool) {
this.tools.set(name, {
execute: tool.execute,
schema: tool.schema,
description: tool.description,
});
}
async use(toolName, params) {
const tool = this.tools.get(toolName);
return await tool.execute(params);
}
}
Creating Agentic Models
Basic Agent Template
class CustomAgent {
constructor(config) {
this.name = config.name;
this.goals = config.goals;
this.planner = new AgentPlanner(config.plannerModel);
this.executor = new AgentExecutor(config.executorModel);
this.memory = new AgentMemory();
this.tools = new AgentTools();
// Register available tools
this.registerTools(config.tools);
}
async run(input) {
// Understand the request
const goal = await this.parseGoal(input);
// Retrieve relevant context
const context = await this.memory.getContext(goal);
// Create execution plan
const plan = await this.planner.createPlan(goal, context);
// Execute plan
const results = await this.executor.executePlan(plan);
// Learn from execution
await this.learn(plan, results);
return results;
}
}
Agent Types
Research Agent
Gathers and synthesizes information:
name: ResearchAgent
capabilities:
- web_search
- document_analysis
- fact_checking
- summarization
- citation_tracking
example_goal: 'Research the latest developments in quantum computing'
Code Agent
Writes and debugs code:
name: CodeAgent
capabilities:
- code_generation
- debugging
- testing
- refactoring
- documentation
example_goal: 'Create a REST API for user management'
Data Agent
Analyzes and processes data:
name: DataAgent
capabilities:
- data_cleaning
- statistical_analysis
- visualization
- pattern_recognition
- prediction
example_goal: 'Analyze sales trends and predict Q4 revenue'
Task Agent
Manages and executes workflows:
name: TaskAgent
capabilities:
- task_scheduling
- dependency_management
- progress_tracking
- notification
- reporting
example_goal: 'Coordinate the product launch campaign'
Multi-Agent Systems
Agent Communication
Agents can collaborate through message passing:
class AgentCommunication {
constructor() {
this.agents = new Map();
this.messageQueue = new Queue();
}
registerAgent(agent) {
this.agents.set(agent.id, agent);
agent.on('message', (msg) => {
this.routeMessage(msg);
});
}
async routeMessage(message) {
const recipient = this.agents.get(message.to);
if (recipient) {
await recipient.receiveMessage(message);
}
}
}
Coordination Patterns
1. Hierarchical
Manager agent coordinates specialist agents:
graph TD
A[Manager Agent] --> B[Research Agent]
A --> C[Analysis Agent]
A --> D[Report Agent]
2. Peer-to-Peer
Agents collaborate as equals:
graph LR
A[Agent A] <--> B[Agent B]
B <--> C[Agent C]
C <--> A
3. Blackboard
Shared workspace for collaboration:
graph TD
A[Blackboard] --> B[Agent 1]
A --> C[Agent 2]
A --> D[Agent 3]
B --> A
C --> A
D --> A
Agent Development Framework
Agent Definition Language (ADL)
Define agents declaratively:
agent:
name: CustomerSupportAgent
version: 1.0.0
goals:
- Resolve customer issues
- Maintain satisfaction above 90%
- Escalate complex issues
capabilities:
- intent: understand_issue
model: gpt-4
prompt: |
Analyze this customer message and identify:
1. Main issue
2. Urgency level
3. Sentiment
- intent: search_knowledge
tool: knowledge_base
params:
index: support_docs
- intent: generate_response
model: gpt-4
prompt: |
Create a helpful response that:
- Acknowledges the issue
- Provides solution
- Maintains friendly tone
memory:
type: conversational
retention: 30_days
constraints:
- max_response_time: 60s
- escalate_after_attempts: 3
- forbidden_actions: [delete_data, modify_account]
Training Agents
Agents can learn from:
1. Supervised Learning
async function trainAgent(agent, trainingData) {
for (const example of trainingData) {
// Show correct behavior
await agent.observe(example.input, example.correctAction);
// Reinforce good decisions
await agent.reinforce(example.reward);
}
// Fine-tune decision making
await agent.updatePolicy();
}
2. Reinforcement Learning
class RLAgent {
async learn(environment) {
let state = environment.reset();
while (!environment.isDone()) {
// Choose action
const action = await this.selectAction(state);
// Execute and observe
const { nextState, reward, done } = await environment.step(action);
// Update knowledge
await this.updateQValue(state, action, reward, nextState);
state = nextState;
}
}
}
3. Learning from Feedback
async function improveFromFeedback(agent, feedback) {
// Analyze feedback
const insights = await analyzeFeedback(feedback);
// Update behavior
for (const insight of insights) {
if (insight.type === 'mistake') {
await agent.addConstraint(insight.constraint);
} else if (insight.type === 'success') {
await agent.reinforcePattern(insight.pattern);
}
}
// Test improvements
await validateBehaviorChange(agent);
}
Deployment and Management
Agent Deployment
Deploy agents to GreenMonkey:
// agent.config.js
export default {
name: 'CustomerSupportAgent',
version: '1.0.0',
deployment: {
instances: 3,
scaling: {
min: 1,
max: 10,
metric: 'queue_length',
},
resources: {
memory: '2GB',
timeout: 300,
concurrent_tasks: 5,
},
},
monitoring: {
metrics: ['response_time', 'success_rate', 'escalation_rate'],
alerts: [
{
condition: 'success_rate < 0.8',
action: 'notify_admin',
},
],
},
};
Monitoring Agents
Track agent performance:
class AgentMonitor {
constructor(agent) {
this.agent = agent;
this.metrics = new MetricsCollector();
}
async trackExecution(goal, execution) {
const startTime = Date.now();
try {
const result = await execution();
this.metrics.record({
agent: this.agent.id,
goal: goal,
duration: Date.now() - startTime,
success: true,
steps: result.steps.length,
toolsUsed: result.toolsUsed,
});
return result;
} catch (error) {
this.metrics.record({
agent: this.agent.id,
goal: goal,
duration: Date.now() - startTime,
success: false,
error: error.message,
});
throw error;
}
}
}
Agent Marketplace
Share and monetize agents:
marketplace_listing:
name: 'SEO Content Strategist Agent'
category: 'Marketing'
description: |
Autonomous agent that creates comprehensive
SEO strategies and content plans.
capabilities:
- Keyword research
- Content planning
- Competitor analysis
- Performance tracking
pricing:
model: 'usage_based'
rate: '$0.10 per task'
requirements:
- api_keys: ['openai', 'semrush']
- min_memory: '1GB'
Advanced Agent Patterns
Chain of Thought (CoT)
Enable reasoning transparency:
class ChainOfThoughtAgent {
async reason(problem) {
const thoughts = [];
// Step 1: Understand the problem
const understanding = await this.think(`Let me understand this problem: ${problem}`);
thoughts.push(understanding);
// Step 2: Break down into steps
const steps = await this.think(`To solve this, I need to: ${understanding}`);
thoughts.push(steps);
// Step 3: Execute each step
for (const step of steps) {
const result = await this.executeStep(step);
thoughts.push(`Step result: ${result}`);
}
return {
solution: await this.synthesize(thoughts),
reasoning: thoughts,
};
}
}
Self-Reflection
Agents that evaluate their own performance:
class ReflectiveAgent {
async executeWithReflection(task) {
// Initial attempt
let result = await this.execute(task);
// Self-evaluation
const evaluation = await this.evaluate(task, result);
// Iterate if needed
while (evaluation.score < this.threshold) {
const improvements = await this.reflect(evaluation);
result = await this.executeWithImprovements(task, improvements);
evaluation = await this.evaluate(task, result);
}
return result;
}
}
Tool Creation
Agents that build their own tools:
class ToolBuildingAgent {
async createTool(need) {
// Identify tool requirements
const spec = await this.specifyTool(need);
// Generate tool code
const code = await this.generateCode(spec);
// Test the tool
const tests = await this.generateTests(spec);
const results = await this.runTests(code, tests);
// Deploy if successful
if (results.passed) {
await this.deployTool(code);
this.tools.register(spec.name, code);
}
return code;
}
}
Security and Safety
Agent Constraints
Define boundaries for agent behavior:
constraints:
actions:
forbidden:
- delete_user_data
- modify_permissions
- access_private_keys
resources:
max_api_calls: 1000/hour
max_memory: 2GB
max_execution_time: 5min
data_access:
allowed_sources:
- public_database
- user_provided
denied_sources:
- internal_systems
- other_users_data
Monitoring and Control
class AgentSupervisor {
async supervise(agent, task) {
const monitor = new SafetyMonitor(agent);
// Set up safety checks
monitor.on('action', async (action) => {
if (this.isDangerous(action)) {
throw new Error(`Blocked dangerous action: ${action}`);
}
});
// Execute with supervision
try {
return await agent.execute(task);
} catch (error) {
await this.handleSafetyViolation(agent, error);
throw error;
}
}
}
Real-World Examples
Customer Service Agent
Complete implementation:
class CustomerServiceAgent extends Agent {
constructor() {
super({
name: 'CustomerServicePro',
model: 'gpt-4',
tools: ['search_kb', 'create_ticket', 'send_email'],
});
}
async handleCustomerQuery(query) {
// Understand intent
const intent = await this.analyzeIntent(query);
// Search knowledge base
const relevantInfo = await this.searchKnowledge(intent);
// Generate response
const response = await this.generateResponse(query, intent, relevantInfo);
// Check if escalation needed
if (this.needsEscalation(intent, response)) {
await this.escalateToHuman(query, intent);
}
return response;
}
}
Research Assistant Agent
class ResearchAssistant extends Agent {
async conductResearch(topic) {
// Plan research strategy
const plan = await this.planResearch(topic);
// Gather information
const sources = await Promise.all([
this.searchAcademic(topic),
this.searchWeb(topic),
this.searchNews(topic),
]);
// Analyze and synthesize
const analysis = await this.analyzeSources(sources);
const synthesis = await this.synthesize(analysis);
// Generate report
return await this.generateReport({
topic,
sources,
analysis,
synthesis,
citations: this.extractCitations(sources),
});
}
}
Best Practices
Design Principles
- Clear Goals - Define specific objectives
- Bounded Autonomy - Set appropriate limits
- Transparency - Make reasoning visible
- Fail Gracefully - Handle errors properly
- Learn Continuously - Improve from experience
Performance Optimization
// Cache frequent operations
const cache = new LRUCache({ max: 1000 });
// Batch similar tasks
const batcher = new TaskBatcher({
maxBatchSize: 10,
maxWaitTime: 1000,
});
// Parallel execution where possible
const results = await Promise.all(independentTasks.map((task) => agent.execute(task)));
Testing Agents
describe('CustomerServiceAgent', () => {
it('should handle simple queries', async () => {
const agent = new CustomerServiceAgent();
const response = await agent.handleQuery('How do I reset my password?');
expect(response).toContain('reset');
expect(response).toContain('password');
expect(response.sentiment).toBe('helpful');
});
it('should escalate complex issues', async () => {
const agent = new CustomerServiceAgent();
const spy = jest.spyOn(agent, 'escalateToHuman');
await agent.handleQuery('I want to sue your company');
expect(spy).toHaveBeenCalled();
});
});