Analytics and Insights Guide

Master GreenMonkey's analytics to optimize your products and maximize revenue.

Analytics Dashboard Overview

Key Metrics

Your seller dashboard displays real-time metrics:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Dashboard Overview                     β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Total Revenue β”‚ Active Productsβ”‚ Total Sales   β”‚ Avg Ratingβ”‚
β”‚ $12,456       β”‚ 24            β”‚ 892           β”‚ 4.8 ⭐   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Navigation

  • Overview - High-level metrics and trends
  • Products - Individual product performance
  • Revenue - Financial analytics
  • Customers - Buyer insights
  • Traffic - Source and conversion data
  • Experiments - A/B test results

Understanding Core Metrics

Revenue Metrics

Total Revenue

Total Revenue = Ξ£(Product Price Γ— Quantity Sold) - Refunds

Track by:

  • Daily/Weekly/Monthly/Yearly
  • Product category
  • Customer segment
  • Geographic region

Average Order Value (AOV)

AOV = Total Revenue / Number of Orders

Strategies to increase AOV:

  • Bundle products
  • Upsell premium tiers
  • Cross-sell related items
  • Volume discounts

Revenue Per Visitor (RPV)

RPV = Total Revenue / Unique Visitors

Benchmark:

  • Good: $0.50-$1.00
  • Great: $1.00-$2.50
  • Excellent: $2.50+

Conversion Metrics

Conversion Rate

Conversion Rate = (Purchases / Product Views) Γ— 100

Industry benchmarks:

  • Digital products: 2-3%
  • Premium products: 1-2%
  • Free to paid: 5-10%

Conversion Funnel

Views β†’ Details β†’ Add to Cart β†’ Purchase
100% β†’  40%   β†’    15%     β†’   3%

Optimize each step:

  1. Views β†’ Details (40%)

    • Compelling titles
    • Eye-catching thumbnails
    • Clear value proposition
  2. Details β†’ Cart (37.5%)

    • Detailed descriptions
    • Social proof
    • Demo/samples
  3. Cart β†’ Purchase (20%)

    • Simple checkout
    • Trust badges
    • Urgency/scarcity

Engagement Metrics

Product View Depth

View Depth = Time on Product Page / Average Session Duration
  • < 30 seconds: Poor engagement
  • 30-90 seconds: Average
  • 90 seconds: High interest

Feature Adoption

Track which features customers use:

  • Downloads completed
  • API calls made
  • Support accessed
  • Updates downloaded

Product Performance Analysis

Product Analytics Grid

Metric Poor Average Good Excellent
Views/Day <10 10-50 50-200 200+
Conversion <1% 1-2% 2-5% 5%+
Rating <3.5 3.5-4.0 4.0-4.5 4.5+
Refund Rate >10% 5-10% 2-5% <2%

Performance Quadrants

High Sales, High Rating ⭐ | High Sales, Low Rating ⚠️
(Stars - Maintain)         | (Cash Cows - Improve)
---------------------------|---------------------------
Low Sales, High Rating πŸš€  | Low Sales, Low Rating ❌
(Potential - Promote)      | (Evaluate - Pivot/Remove)

Product Lifecycle

Introduction β†’ Growth β†’ Maturity β†’ Decline
     πŸ“ˆ           πŸ“Š        πŸ’°        πŸ“‰

Stage indicators:

  1. Introduction (0-30 days)

    • Building reviews
    • Testing pricing
    • Refining positioning
  2. Growth (1-6 months)

    • Increasing sales
    • Organic traffic
    • Word of mouth
  3. Maturity (6-24 months)

    • Stable sales
    • Market saturation
    • Competition emerging
  4. Decline (24+ months)

    • Decreasing sales
    • Outdated content
    • Better alternatives

Customer Insights

Buyer Personas

Analyze your customer base:

Persona: Professional Developer
- Average Spend: $89
- Products Bought: 3.2
- Categories: APIs, Templates
- Time to Purchase: 2 days
- Retention: 67%

Persona: Freelance Marketer
- Average Spend: $45
- Products Bought: 5.7
- Categories: Prompts, Workflows
- Time to Purchase: Same day
- Retention: 82%

Customer Journey Mapping

Discovery β†’ Research β†’ Evaluation β†’ Purchase β†’ Usage β†’ Advocacy
    |          |           |           |         |         |
  Search    Reviews    Compare      Buy      Implement  Share
  Social    Demos      Pricing      Pay      Support    Refer
  Referral  Docs       Support      Use      Update     Review

Cohort Analysis

Track customer groups over time:

Cohort Month 1 Month 2 Month 3 Month 6 Month 12
Jan '24 100% 45% 32% 25% 18%
Feb '24 100% 52% 38% 28% -
Mar '24 100% 48% 35% - -

Traffic Analytics

Traffic Sources

Organic Search: 35% πŸ“ˆ
Direct: 25% πŸ”—
Social Media: 20% πŸ“±
Referrals: 15% 🀝
Paid Ads: 5% πŸ’°

Source Performance

Source Visitors Conversion AOV Revenue
Google 5,234 3.2% $67 $11,234
Discord 2,456 4.8% $89 $10,456
Twitter 1,234 2.1% $45 $1,167
Direct 3,456 5.2% $92 $16,534

SEO Performance

Track organic visibility:

  • Keyword rankings
  • Click-through rates
  • Page load speed
  • Mobile usability

Advanced Analytics

Predictive Analytics

Churn Prediction

# Factors indicating churn risk
churn_indicators = {
    'days_since_last_purchase': 90,
    'support_tickets': 3,
    'refund_requests': 1,
    'low_ratings_given': 2,
    'decreased_usage': -50%
}

Revenue Forecasting

Next Month Revenue =
  (Trend Γ— 0.4) +
  (Seasonal Γ— 0.3) +
  (Recent Γ— 0.3)

A/B Testing Analytics

Test Setup

Test: Pricing Optimization
Variants:
  A: $49 (control)
  B: $59 (test)
Duration: 14 days
Traffic Split: 50/50

Results Analysis

Variant A:
- Visitors: 1,234
- Conversions: 45
- Rate: 3.65%
- Revenue: $2,205

Variant B:
- Visitors: 1,198
- Conversions: 38
- Rate: 3.17%
- Revenue: $2,242

Statistical Significance: 89%
Winner: Inconclusive (need more data)

Correlation Analysis

Identify what drives sales:

Factor Correlation with Sales
Price -0.32 (negative)
Reviews +0.78 (strong positive)
Description Length +0.45 (moderate)
Images +0.56 (positive)
Updates +0.67 (positive)

Using Analytics for Optimization

Price Optimization

Use price elasticity data:

Price Points Tested:
$29: 145 sales = $4,205
$39: 98 sales = $3,822
$49: 67 sales = $3,283 ← Current
$59: 45 sales = $2,655
$69: 28 sales = $1,932

Optimal: $39 (highest revenue)

Listing Optimization

Elements to test:

  1. Title variations

    • Benefit-focused vs. Feature-focused
    • Length (short vs. detailed)
    • Keywords placement
  2. Images

    • Screenshots vs. Diagrams
    • Before/after comparisons
    • Video thumbnails
  3. Description

    • Bullet points vs. Paragraphs
    • Technical vs. Benefits
    • Length variations

Conversion Rate Optimization (CRO)

Quick Wins

  • Add video demos (+32% conversion)
  • Show use cases (+28% conversion)
  • Include testimonials (+24% conversion)
  • Display recently sold (+18% conversion)
  • Add urgency/scarcity (+15% conversion)

Testing Priority Matrix

Impact Effort Priority Example
High Low 🟒 Do First Add testimonials
High High 🟑 Plan Create video course
Low Low 🟑 Quick Win Update images
Low High πŸ”΄ Skip Complex features

Reporting and Dashboards

Daily Dashboard

Monitor these metrics daily:

Today's Performance:
β”œβ”€β”€ Revenue: $456 (↑12% vs yesterday)
β”œβ”€β”€ Sales: 12 units
β”œβ”€β”€ Conversion: 3.4%
β”œβ”€β”€ New Reviews: 3 (avg 4.7⭐)
└── Support Tickets: 2

Weekly Report

Key weekly metrics:

Week of March 10-16:
β”œβ”€β”€ Total Revenue: $3,234 (↑8% WoW)
β”œβ”€β”€ Best Day: Tuesday ($678)
β”œβ”€β”€ Top Product: SEO Prompt Pack (34 sales)
β”œβ”€β”€ New Customers: 67
β”œβ”€β”€ Retention Rate: 23%
└── NPS Score: 72

Monthly Analysis

Comprehensive monthly review:

  1. Revenue trends
  2. Product performance
  3. Customer acquisition cost
  4. Lifetime value
  5. Market position
  6. Competitive analysis

Analytics Tools Integration

Google Analytics 4

Track custom events:

// Purchase event
gtag('event', 'purchase', {
  currency: 'USD',
  value: 49.99,
  items: [
    {
      item_id: 'PROD_123',
      item_name: 'SEO Prompt Pack',
      item_category: 'Prompts',
      price: 49.99,
      quantity: 1,
    },
  ],
});

Hotjar/Clarity

Understand user behavior:

  • Heatmaps
  • Session recordings
  • Conversion funnels
  • Form analytics

Custom Analytics

Build your tracking:

# Track custom metrics
def track_product_metric(product_id, metric, value):
    analytics.track(
        product_id=product_id,
        event=f"product.{metric}",
        properties={
            'value': value,
            'timestamp': datetime.now(),
            'source': 'seller_dashboard'
        }
    )

Action Plans from Analytics

Low Conversion Rate

If conversion < 2%:

  1. Analyze where visitors drop off
  2. Review competitor listings
  3. Test new headlines
  4. Add social proof
  5. Improve product images
  6. Clarify value proposition

High Refund Rate

If refunds > 5%:

  1. Survey refund reasons
  2. Update product description
  3. Improve onboarding
  4. Add video tutorials
  5. Enhance support docs
  6. Set better expectations

Stagnant Growth

If growth plateaus:

  1. Launch new products
  2. Update existing products
  3. Expand to new categories
  4. Create bundles
  5. Run promotions
  6. Invest in marketing

Best Practices

Data-Driven Decisions

βœ… Do:

  • Test before making changes
  • Track everything
  • Set clear goals
  • Review regularly
  • Act on insights

❌ Don't:

  • Rely on gut feelings
  • Make multiple changes at once
  • Ignore negative feedback
  • Focus on vanity metrics
  • Stop testing

Analytics Hygiene

  1. Clean data - Remove test purchases
  2. Consistent tracking - Same metrics over time
  3. Regular reviews - Weekly minimum
  4. Document changes - Track what you changed
  5. Share insights - Learn from community

Next Steps

  1. Set up analytics goals
  2. Create first A/B test
  3. Build custom dashboard
  4. Join analytics workshop